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Key Messages 

Simulations of water fluxes and storages are indispensable for a range of applications from driving 

atmospheric models, understanding and forecasting of extreme events, to water resources 

management. Predictive skills of models can be improved by assimilating observations. 

Here, total water storage anomalies (TWSA) from the GRACE mission were assimilated into the  

high-resolution land surface model (Community Land Model, CLM3.5) over Europe for the time period 

2003-2010. 
 

Particular challenges arise from  the different spatial and temporal resolution of GRACE and CLM3.5: 

Å GRACE: monthly data, vertically aggregated, ~200 km horizontal resolution, spatially filtered 

Å CLM3.5: hourly time steps, up to 15 vertical layers, 12.5 km horizontal resolutions 
 

There is still an open question at which spatial resolution GRACE data should best be assimilated. 

This choice has significant impact on filter performance, which is shown here for grids of  0.5Á to 5Á 

resolution. The best fit to original GRACE data was obtained for the 0.5Á grid when applying a 

localization to the analysis step. 
 

Validation with independent data sets (in-situ soil moisture, discharge at gauging station, GPS vertical 

deformation) suggests dramatic improvements of the assimilated model (DA) with respect to the 

open-loop model (OL) in terms of correlation and RMSD. 
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Fig.2: Total water storage anomalies for January 2003 of (a) GRACE observations on a 1Á grid, (b) the CLM3.5 open-

loop run, (c) GRACE assimilated on a 5Á grid, (d) on a 1Á grid, and (e) on a 1Á grid additionally applying localization. 

Fig.3: RMSD between GRACE observations and total water storage anomalies from CLM3.5 for the open-loop run and 

for assimilation runs using GRACE data on different grids for a) the global ETKF and b) the localized ETKF. 

a) global filter b) local filter 

Fig.1: RMS scatter of total water storage (TWS) from CLM3.5. 

Validation: soil moisture observations 

Fig.4: In-situ soil moisture measurements from the international soil moisture network (ISMN) are contrasted to soil 

moisture from the corresponding soil layers of CLM3.5 in terms of (a) correlation using OL, (b) correlation using DA, 

and (c) improvement of the RMSD using DA instead of OL. All time series are de-seasoned and de-trended.  

a) b) c) 

Fig.5: (a) Correlation between 

remotely sensed soil moisture from 

the ESA-CCI product and mean soil 

moisture from the upper two layers 

(corresponds to 4 cm) of CLM3.5-DA. 

b) Improvement of correlation 

between observed soil moisture and 

soil moisture from DA and Ol, 

respectively. All time series are de-

seasoned and de-trended.  
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Validation: discharge at gauges 

Discharge data at gauging stations were obtained from the GRDC and 

insufficiently long time series were extended calibrating the monthly 

rainfall-runoff model GR2M against existing observations, subsequently 

generating consistent model discharge time series for the study period. 

Nash-Sutcliffe coefficients between modeled and observed discharge 

reach values between 0.6 and 0.9 for an independent validation period. 

Fig.6: Correlation between discharge 

simulated by CLM3.5 (gridded surface 

and subsurface discharge) and 

discharge obtained from GR2M for (a) 

OL and (b) DA. All time series are 

deseasoned and detrended.  

a) b) 

discharge station 

Vertical deformation from 160 continuously operating GPS stations of the ITRF14 are 

sensitive to water mass changes on top of the Earthôs elastic crust. After removing loading 

deformation induced by atmosphere and ocean, GPS observations were compared to vertical 

deformation caused by TWS changes from CLM3.5-DA for the time period 2003 to 2010. 

Validation: GPS vertical deformation 

Fig.7: Reduction of RMS scatter of GPS 

when subtracting CLM3.5-DA. 

Fig.8: Difference in the RMS scatter reduction for (a) CLM3.5-OL versus CLM3.5-DA and  

(b)  GRACE versus CLM3.5-DA. Blue indicates a larger reduction of the for CLM3.5-DA. 
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