General objectives

- Joined statistical analysis of surface soil moisture datasets
 - acquired across a variety of land use types
 - on different spatial scales (plot to mesoscale catchment)
 - with different methods (field measurements, remote sensing, and modelling)
- better understand temporal and spatial soil moisture patterns at different scales
- identify driving parameters and processes explaining these patterns and their temporal dynamics

The Rur catchment

Soil moisture data sets:
- Northern part (crops):
 1) ALOS, C-band radar remote sensing (15m)
 2) ENVISAT, C-band radar remote sensing (150m)
 3) Danubia, model (150m)
- Wüstebach sub-catchment (forest):
 4) SoilNet, automated sensor network (5-50m)
 5) HydroGeoSphere, model (5-50m)

Descriptive statistics: Spatial Mean – Coefficient of variation

Autocorrelation

Tobler’s first law of geography: “Everything is related to everything else, but near things are more related than distant things.”

- Cross-correlation of a signal with itself
- Similarity between observations as a function of the space- or time-lag between them

Autocorrelation analysis with semivariograms

Fractals

Log-log plot of the semivariances:

\[D = 3 - B / 2 \]

with \(B \) as the slope of the regression line in the log-log plot of the variogram

Conclusion

- Three groups of datasets with consistent range parameters (geostatistics) and scale breaks (fractal analysis) were found
 - associated with small scale topography (forest sub-catchment)
 - field sizes (Rur catchment) and
 - large scale variability of soil types (Rur catchment)
- Generally high fractal dimensions, high spatial variability of soil moisture
- Multifractal behavior with at least one scale break, indicating that various processes or driving parameters operate at different scales
- A multi-fractal model is seen as an appropriate approach to capture and describe the nested scales of variability of soil moisture patterns

Acknowledgements:
We gratefully acknowledge financial support by the SFB/TR 32 “Patterns in Soil-Vegetation-Atmosphere Systems: Monitoring, Modelling, and Data Assimilation” funded by the German Science Foundation (DFG) and by TERENO “Terrestrial Environmental Observatories” funded by the Helmholtz Association and the Federal Ministry of Education and Research (BMBF).

Thanks to my co-authors:
Conclusion

- Three groups of datasets with consistent range parameters (geostatistics) and scale breaks (fractal analysis) were found
 - associated with small scale topography (forest sub-catchment)
 - field sizes (Rur catchment) and
 - large scale variability of soil types (Rur catchment)
- Generally high fractal dimensions, high spatial variability of soil moisture
- Multifractal behavior with at least one scale break, indicating that various processes or driving parameters operate at different scales
- A multi-fractal model is seen as an appropriate approach to capture and describe the nested scales of variability of soil moisture patterns